The article provides information about new discoveries of the Late Paleolithic era in the Fergana Valley. Discovered finds are analyzed in comparison with archaeological materials.

Keywords: Selungur, Chashma, Sarikurgan 1, Egrikulatasoy, Asian Ashel, Ashel-Moustier complex, stone industry, nucleus, grater, flake.

Introduction

Uzbekistan is considered one of the most ancient territories in Central Asia and is rich in monuments of the ancient Stone Age. Here are dozens of sites belonging to the Early, Middle and Late Paleolithic. The Selungur cave is attributed to the Early Paleolithic (although this site is located on the territory of Kyrgyzstan, it was studied by Uzbek scientists) [6, p. 53–59; 8, p. 34-35; 9, p. 143-163], the lower layers of Kulbulak in the Akhangaran river valley in the Tashkent oasis [15, p. 31], lifting materials from the terrace of the Sokh river (Chashma) [8, p. 34] and part of the materials from the flint workshop – Uchtut (Achelo-Mousterian complex) [15].

The Fergana Valley is considered to be one of such territories in which there were favorable paleoecological conditions for the life and development of primitive populations. As mentioned above, in the upper reaches of the Sokh River, early Paleolithic monuments such as Selungur and Chashma were discovered and studied, which are the most ancient sites of primitive man not only in Uzbekistan, but throughout Central Asia. Among them, the Selungur cave is of world importance. Here, the remains of the most ancient hominids were discovered, which are recognized as the oldest paleoanthropological remains throughout Central Asia [16, p. 11–21]. Remains of animal and plant bones were also found in the cultural layers of Selungur, which provided important information for the restoration of the paleoecology of that time. In addition, a rich collection of stone products has been collected from the eight layers of Selungur, numbering more than 5000 artifacts related to the Early Paleolithic, i.e. Asian Achelle. The chronology of the monument was determined by the authors of the excavations 1.5 million years from the present day [6, p. 53–59; 7, p. 38-49; 11, p. 18-27; 17, p. 71].

Results of a research

The stone items found near the village of Chashma, dated to the second half of the Early Paleolithic, are distinguished by their uniqueness and originality [6, p. 34–35; 10, p. 39-42].

The Middle Paleolithic monuments in Fergana were found by M.R.Kasymov already in 1964–1965, on
the third terrace of the Sokh River near the Chungara village. Four points with stone products were recorded here, among which there were nucleus, flakes and blades (31 in total). In addition, Mousterian materials were found at two points 2.5 km south of the Sarykurgan village. Here, on the surface of 600x600 sq. m, collected more than 200 stone products. Around the villages of Zartosh and Sekitma, cores, blades and other stone items typical of the Middle Paleolithic were also collected [14, p. 29].

Middle Paleolithic materials were also found in the adyrs around Fergana. Back in the 50s of the twentieth century, local historian P.T. Konoplya collected about 200 stone products from the areas of Karamkul, Aktash, Saurbulak and six other locations. Among the finds were fifteen nucleus and five stone tools [3, p. 23]. Later, M.R. Kasymov continued his research in the Karamkul locality. He discovered six stone items, among which there is a classic Mousterian point. M.R. Kasymov also studied the locations of Kalach 1-5, located 10 km north-east of Fergana. In these five places, stretching along Kuvasia, about 150 heavily rounded and patinated artifacts of siliceous schist and hornfels were collected [14, p. 30–35].

A number of monuments dating back to the Middle Stone Age in Fergana were found in the valley of the Sokh River, which became known as the Obishir culture (IX-VII thousand years BC) [5, p. 16–37; 12, p. 5-12]. Subsequently, this Mesolithic culture laid the foundation for the emergence of a kind of culture of the Neolithic tribes of Central Fergana (VIII-IV thousand years BC) [4, p. 29-31].

As can be seen from the general history of the study, in the Fergana region, monuments and cultures have been identified that relate to all stages of the history of the Stone Age. An exception is the late stage of the Paleolithic era, since until now no materials of the Upper Paleolithic era (40–12 thousand years BC) have been found here.

However, in the summer of 2011, the Kokand Paleolithic detachment, headed by BK Saiifulaev, carried out exploration work on the left-bank terraces of the Sokh River, located on the territory of the Sarikurgan village of the Uchkuprik district of the Fergana region [1, p. 68–83]. As a result of these studies, dozens of Paleolithic stone items were found on the second terrace of the river. These artifacts are mainly processed from siliceous limestone of black and gray shades, among which there are nucleus, end-scrapers and cutters characteristic of the Late Paleolithic era. Thus, this is the first Late Paleolithic monument found in the vicinity of Kokand. The location was named Sarikurgan 1. One of the stone items found here is a two-platform nucleus made of siliceous limestone, 87x75x36 mm in size. Flakes of shortened and, more rarely, elongated proportions were removed from it. The main striking platform of the nucleus was a naturally broken core and, apparently, therefore, a second counter striking platform was formed to remove the resulting inconveniences on the working surface. On the reverse side, the strongly sloped main striking platform and partial traces of the oncoming platform are preserved. The working surface of the core is more patinized than its back side, apparently related to the conditions of bedding.

The second item from this locality turned out to be a two-platform end nucleus made on a flake of basalt measuring 72x53x23 mm. The negatives of spalls on the dorsal of the blank flake are unipolar. The striking platform of the flake and the distal of the object were re-shaped into the striking platform of the nucleus, from which counter-splitting of blade spalls were made along the left lateral of the workpiece. On the distal of the product, there are also traces of negatives from an attempt at face splitting from the right lateral of the workpiece. Both striking platforms of the nucleus are faceted.

The third item is a socket-cutter nucleus + side-scrapers made on a flake of basalt measuring 70x46x17 mm. The negatives of spalls on the dorsal of the blank flake are bipolar-opposite. The striking platform and the distal of the flake were transformed by faceting into beveled striking platforms of the nucleus for facet splitting. To remove lamellar spalls, counter splitting was performed from the right lateral. In the literature, such items are commonly called burin nucleuses [19, p. 30–32]. The left lateral part of the item was re-shaped into side-scrapers using bifacial flat and ordinary retouching. The shape of the working edge of the scraper is straight, but slightly rounded. In addition, this scraper is less pattizzed than the workpiece itself.

The fourth artifact is a two-lateral faceted nucleus made of siliceous limestone with dimensions 103x47x31 mm. An oblong flake, on the dorsal of which there are negatives of unipolar lamellar removals, served as a blank. But the ventral of the product is almost completely covered by the negative of thermal split. Lamellar spalls were removed from it from two laterals and from two opposite sites in the subparallel direction. But both striking platforms of the core are broken. From the left lateral, where the end splitting did not reach the base of the nucleus, the crossing processing of the working surface is preserved. Apparently, during the processing of this end splitting, a crossing splitting technique was used, which are rarely found in the collections of the Late Paleolithic and are characteristic of the later stages of the Stone Age [2, p. 2–12].

Another nucleus of the collection is a cone-shaped cutting tool for removing lamellar spalls from basalt with dimensions 63x54x40 mm. A piece of pebble with a beveled and broken surface was used as a workpiece, from which splitting was performed, which formed the form of a cone. The nucleus is slightly rounded and the surface, which served as a striking platform, is illustrated.

The next product turned out to be a combined tool. This is a retouched flake + an end-scraper made of basalt with dimensions 61x40x7 mm. The striking platform of the flake is smooth and slightly sloping towards the rear. The negatives of cleavages on the dorsal are bipolar opposite. The left distal of the item was retouched from the dorsal side. A scraper blade is formed on the distal medial with the help of semicircular ordinary retouching from the dorsal side. As the researchers define, the right lateral flake has...
bilateral irregular retouching, apparently from utilization [2, p. 2–12].

In Sarykurgan 1, one puncture + Clectonian ankosh from basalt with dimensions 85x33x13 mm was also found. A piece of slightly deflated pebbles served as a blank. On the medial of the left lateral, it has an ordinary ankosh on the side of the dorsal. Then one of the ends of the item was re-shaped into a piercing with the help of bilateral flat retouching, which was slightly deflated. Highlighted the pith of the puncture using ventral corrections.

Among the stone tools of the collection, a retouched ankosh + double side-scraper + a basalt scraper with dimensions of 80x63x21 mm stands out. The retouched ankosh is formed on the proximal left lateral from the dorsal side. A scraper on the left lateral, processed with the help of ordinary retouching, juts out to the ankosh. The shape of the working edge of the scraper is straight, but this edge of the product is rounded and illustrated. The scraper was shaped at the proximal angle using semi-steep subparallel microplate retouching from the ventral side. This scraper merges with the scraper, processed with the help of semi-steep flat and ordinary retouching. The shape of the working edge of the scraper is straight. On the dorsal of the blank flake, there are negatives of convergent flaking, and also partially retains the remains of a pebble cover. The ventral of the flake is completely lustrated. The right lateral of the item also bears traces of irregular retouch from the dorsal side, but they are strongly rounded.

The next tool in this collection is a basalt flake measuring 70x52x15 mm. The striking platform of the flake is faceted and strongly sloping towards the rear. On the dorsal side, the item is covered with negatives of bipolar counter chips and partially retains the remains of a pebble cover. On the left lateral of the flake, there are traces of irregular retouching, apparently formed as a result of consumption. The right lateral side of the flake has traces of blunt retouching. The distal medial and the right distal coal of the flake were processed using fine alternating retouching [1, p. 59–86; 2, p. 2–12].

The above-described stone products certainly characterize the late Paleolithic era. But what chronological stage these artifacts represent within the late Paleolithic era is difficult to say. As a close analogy, we can cite the materials of the Late Paleolithic monuments of the Tashkent oasis and the recently found monument of Kutirbulak in the Bulakbashi region of the Andijan region [18, p. 24–28]. The historical significance of these localities lies in the fact that if the materials of Sarykurgan 1 fill that missing gap in the primitive history of Fergana, and Kutirbulak of the history of Andijan, then the location of Egrikulatasaya is generally the first evidence of the Paleolithic in the history of the Namangan region.

Conclusions

Despite the small number of discovered items, this location is promising for further research. The stone products in this collection can also be attributed to the late Paleolithic era. As close analogies, we can again cite the materials of the Late Paleolithic monuments of the Tashkent oasis and the recently found monument of Kutirbulak in the Bulakbashi region of the Andijan region. The historical significance of these localities lies in the fact that if the materials of Sarykurgan 1 fill that missing gap in the primitive history of Fergana, and Kutirbulak of the history of Andijan, then the location of Egrikulatasaya is generally the first evidence of the Paleolithic in the history of the Namangan region.

References

20. Махмудов О. В. Феномен Толедской школы и три этапа переводов // Евразийский Союз Ученых. – 2017. – №. 12-1 (45), С. 5-9 [Махмудов О. В. The phenomenon of the Toledo school and the three stages of translation // Eurasian Union of Scientists. 2017; 12-1 (45): 5-9 (in Russ)].
23. Махмудов О. В. Some reasons about employees of the translator Domingo Gundisalvo in Toledo School // Austrian Journal of Humanities and Social Sciences. 2017; (1-2): 3-7. DOI: http://dx.doi.org/10.20534/AJH-17-1.2-3-7
27. Махмудов О. The role of the Toledo as a center for the transfer of scientific knowledge of medieval Eastern scientists to Europe. Евразийский Союз Ученых. [Evaziyskiii Soyuz Uchenyk]. 2020; №. 6-8 (75). P. 13-16. DOI: 10.31618/ESU.2413-9335.2020.8.75.890