ПОЛУЧЕНИЕ НАНОДИСПЕРСНОГО ПОРОШКА ГАФНАТА ГАДОЛИНИЯ GD2HFO5 МЕХАНОХИМИЧЕСКИМ СПОСОБОМ

  • Zh. Eremeeva Национальный исследовательский технологический университет «МИСиС»
  • S. Vorotylo Национальный исследовательский технологический университет «МИСиС»
  • Yu. Kaplansky Национальный исследовательский технологический университет «МИСиС»
  • D. Sidorenko Национальный исследовательский технологический университет «МИСиС»
  • D. Kovalev Национальный исследовательский технологический университет «МИСиС»
  • N. Shvyndina Национальный исследовательский технологический университет «МИСиС»
  • A. Akhmetov Национальный исследовательский технологический университет «МИСиС»
  • A. Saenko Национальный исследовательский технологический университет «МИСиС»
Ключевые слова: порошки, оксиды гафния и диспрозия, механохимический синтез, нанокристаллический гафнат диспрозия, поглощающие элементы, электронная микроскопия, структура, удельная поверхность, насыпная плотность

Аннотация

Порошки гафната гадолиния Gd2HfO5 были получены методом механохимического синтеза из оксидов гафния и диспрозия. Структура и основные физико-химические свойства исследованы с применением методов РФА, растровой электронной спектроскопии, ПЭМ и химического анализов. РФА показывает, что полное превращение исходных оксидов в однофазный нанодисперсный гафнат гадолиния Gd2HfO5 происходит при механической обработке смеси в течение 30мин

Литература

1. Sickafus Kurt E., Grimes Robin W., Valdez James A., Cleave Antony, Ming Tang, Ishimaru Manabu, Corish Siobhan M., Stanek Christopher R. & Uberuaga Blas P. Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides.// Nature Materials. 2007. No. 6. P. 217 – 223.
2. Рисованый В.Д., Варлашова Е.Е., Фридман С.Р., Пономаренко В.Б., Щеглов А.В. Сравнительные характеристики поглощающих кластерных сборок ВВЭР-1000 и PWR. //Атомная энергия. 1998. т. 84. в. 6. С. 508–513.
3. Белаш Н.Н., Куштым А.В., Татаринов В.Р., Чернов И.А. Анализ разработок конструкций и материалов пэлов ПС СУЗ повышенной работоспособности. //Ядерные и радиационные технологии. 2007. т. 7. No. 3-4. С. 18-28. 4. Рисованный В.Д., Захаров А.В., Муралева Е.М. Новые перспективные поглощающие материалы для ядерных реакторов на тепловых нейтронах. //Вопросы атомной науки и техники. Серия: Физика радиационных повреждений и радиационное материаловедение (86).2005. No. 3. С. 87-93.
5. Risovany V.D., Zakharov A.V., Muraleva E.M., Kosenkov V.M., Latypov R.N. Dysprozium hafnate as absorbing material for control rods. // Journal of Nuclear Materials. 2006. v. 355. P. 163-170.
6. Fridman S.R., Risovany V.D.et al. Radiation stability of WWER-1000 CPS AR absorber element with boron carbide, VANT. S: Physics of radiation damages and radiation science of materials. 2001. No2. P. 84-90.
7. Абдусалямова М.Н., КабговХ.Б., Махмудов Ф.А. Получение и свойства наноструктурированных оксидов диспрозия//Доклады Академии Наук Республики Таджикистан. Т.56. №2. 2013. с.130-135.
8. Халамейда С.В. Некоторые новые подходы при механохимическом синтезе нанодисперсного титаната бария. // Nanosystems, Nanomaterials, Nanotechnologies. Киев, Украина. 2009. т. 7. No 3. С.911—918.
9. Lyashenko L. P., Shcherbakova L. G., Kolbanev I.V., Knerel’man E. I., Davydova G. I. Mechanism of Structure Formationin Samarium and Holmium Titanates Prepared from Mechanically Activated Oxides.//ISSN 0020-1685, Inorganic Materials. 2007. Vol. 43. No. 1. P. 46–54. Original Russian Text © Lyashenko L.P., Shcherbakova L.G., I.V. Kolbanev, E.I. Knerel’man, G.I. Davydova, published in Neorganicheskie Materialy. 2007. Vol. 43. No. 1.
10. Szafraniak-Wiza I., Hilczer B., Talik E., Pietraszko A., Malic B. Ferroelectric perovskite nanopowders obtained by mechanochemical synthesis.//Processing and Application of Ceramics. 2010. No. 4. P. 99–106.
11. Анохин А.С., Лянгузов Н.В, Рошаль С.Б., Юзюк Ю.И., Wen Wang Спектры комбинационного рассеяния поликристаллических нанотрубок титаната висмута.//Ж.Физика твердого тела 2011. т.53. вып.9. С.1968-1772
12. Синдо Д., Оикава Т. Аналитическая просвечивающая электронная микроскопия.// М.:Техносфера. 2004. 256C.
13. Захаров А.В., Рисованый В.Д., Муралева Е.М., Соколов В.Ф. Разработка и освоение производства гафната диспрозия как поглощающего материала для органов регулирования перспективных реакторов на тепловых нейтронов. //Сборник трудов ОАО « ГНЦ НИИАР». 2011 (2). С. 8-13.
14. Перова Е. Б., Спиридонов Л. Н., Комисарова Л. Н. Фазовые равновесия в системе HfO2-Dy2O3 // Известия Академии наук СССР. Неорганические материалы. 1982.Т. 8 No 10 C. 1878–1882.
15. Попов В. В., Менушенков А. П., Зубавичус Я. В., Велигжанин А. А., Ярославцев А.А. и др. Закономерности образования нанокристаллической структуры и катионного упорядочения в системе Dy2O3 : HfO2 = 1 : 1. //Ж. неорганической химии. Изд. РАН (Москва). 2013г. Т.53. No 3. C.331 – 337.
16. Попов В. В., Менушенков А. П., Зубавичус Я. В., Коровин С.А., Фортальнова Е.А. и др. Особенности структуры и теплофизические свойства керамических сложных оксидов в системе Dy2O3 - HfO2//Ж. Стекло и керамика. Изд. «Ладья» (Москва). 2016г. No2. С. 11-17.
17. Воронько Ю.К., Соболь А.А., Шукшин В.Е. Моноклинно-тетрагональный фазовый переход в оксиде гафния: исследование методом высокотемпературной спектроскопии комбинационного рассеяния света.//Ж. Физика твердого тела. 2007. Т.49. вып.10. С.265 – 269.
18. Прокип В.Э. Физико – химические исследования германатов гафния. Диссертация на соискание ученой степени к.х.н. Новосибирск. 2017г.
Опубликован
2020-10-30
Как цитировать
Eremeeva , Zh., S. Vorotylo, Yu. Kaplansky, D. Sidorenko, D. Kovalev, N. Shvyndina, A. Akhmetov, и A. Saenko. 2020. «ПОЛУЧЕНИЕ НАНОДИСПЕРСНОГО ПОРОШКА ГАФНАТА ГАДОЛИНИЯ GD2HFO5 МЕХАНОХИМИЧЕСКИМ СПОСОБОМ ». EurasianUnionScientists 5 (9(78), 23-28. https://archive.euroasia-science.ru/index.php/Euroasia/article/view/74.