MONITORING OF ENVIRONMENTAL OBJECTS USING ECOLOGICALLY CLEAN ELECTRODES

  • Д. Аронбаев Самаркандский государственный университет
  • С. Аронбаев Самаркандский государственный университет
  • Д. Исакова Самаркандский государственный университет
Keywords: environmental monitoring, laboratory on a chip, micro-electronics, screen-printed electrode, voltammetry, heavy metal ions

Abstract

The review article presents the achievements of stripping voltammetry with modified environmentally friendly carbon-containing electrodes in environmental monitoring of the environment. The main objective of the research was the complete elimination of toxic mercury from the analytical procedure and its replacement with modifiers, which include bismuth, hydroxyapatite, montmorillonite, ionic liquids, chitosan, materials based on plant and animal cells, as well as their composites with graphite. The issues of development creating microchips with the use of screen printing technologies for solving problems of microtechnology and innovative technologies in the manufacture of microelectrodes that allow analysis in microvolumes of samples are considered. Examples of the use of bismuth and hydroxyapatite modified screen-printed electrodes in the analysis of heavy toxic metals in environmental objects are given. Screen-printed electrodes allow the use of portable systems for real-time analysis, and the automation of their production process makes them more versatile for routine use at low costs, which, in turn, allows their disposal use, especially in demand for non-invasive medical diagnostics.

Author Biographies

Д. Аронбаев , Самаркандский государственный университет

к.х.н, доцент кафедры неорганической химии и материаловедения  химического факультета

С. Аронбаев , Самаркандский государственный университет

д.х.н., профессор кафедры неорганической химии и материаловедения  химического факультета

Д. Исакова , Самаркандский государственный университет

ассистент кафедры химии

References

1. Anastas P.T, Kirchhoff M.M. Origins, current status, and future challenges of green chemistry // Acc Chem Res. 2002. V.35(9). P.686–694.
2. Anastas P.T., Warner J.C. Green chemistry: theory and practice. - USA: Oxford University Press; 1998. 30 p.
3. Clark J.H., Macquarrie D.J. Handbook of green chemistry and technology. USA: Wiley-Blackwell; 2002. 564 p.
4. Якунина И.В., Попов Н.С. Методы и приборы контроля окружающейсреды. Экологический мониторинг : учебное пособие . – Тамбов : Изд-во Тамб. гос. техн. ун-та, 2009. – 188 с. / https://www.tstu.ru/book/elib /pdf/2009/Popov-Yakunina-l.pdf. Дата обращения 5.01.2021
5. Clarkson T.W. Metal toxicity in the central nervous system // Environ Health Perspect. 1987. V.75. P.59–64.
6. Sanchez M.L. Causes and effects of heavy metal pollution. - USA: Nova Science Publisher; 2009.
7. Gardolinski P.C., Hanraha G., Achterberg E.P., et al. Comparison of sample storage protocols for the determination of nutrients in natural waters // Water Res. 2001. V.35(15). P.3670–3678.
8 Выдра Ф., Штулик К., Юлакова Э. Инверсионная вольтамперометрия. – М.: Мир, 1980. – 278 с.
9. Аронбаев С. Инверсионная вольтамперометрия. Методические указания к выполнению лабораторных работ по курсу «Электрохимические методы анализа». – Самарканд: СамГУ, 2015. – 42 с. [ library. ziyonet.uz›uz/book/download/22155 ].
10. Alegret S., Merkoçi A. Electrochemical sensor analysis.1st ed. Elsevier Science Limited, Canada: Springer; 2007. 1028 p. 11. Scholz F. Electroanalytical methods: guide to experiments and applications: USA: Springer Verlag; 2010. 366 p.
12. Аронбаев С.Д., Норкулов У.М., Нармаева Г.З., Аронбаев Д.М Висмутмодифицированные электроды в вольтамперометрическом анализе органических соединений и биологически активных веществ: опыт применения и перспективы развития // Universum: Химия и биология: электрон. научн. журн. 2019. № 3(57).URL: http://7universum.com/ru /nature/archive/item/6974.
13. Choi H.S., Kim H.D. Development of a portable heavy metal ion analyzer using disposable screen-printed electrodes //Bulletin of the Korean Chemical Society. 2009. V.30(8). P.1881–1883.
14. Cooper J., Bolbot J., Saini S., et al. Electrochemical method for the rapid on site screening of cadmium and lead in soil and water samples // Water, Air, & Soil Pollution. 2007. V.79(1). P.183–195.
15. Beni V., Ogurtsov V., Bakunin N., et al. Development of a portable electroanalytical system for the stripping voltammetry of metals: Determination of copper in acetic acid soil extracts //Analytica Chimica Acta. 2005. V.552. P.190–200.
16. Shitanda I., Irisako T., Itagaki M. Threeelectrode type micro- electrochemical cell fabricated by screen-printing. Sensors Actuators B: Chemical. 2011. V.160. P. 1606.
17. Das R.N., Lin H.T., Lauffer J.M., et al. Printable electronics: towards materials development and device fabrication // Circuit World. 2011. V.37. P.38–45.
18. Renedo O.D., Alonso-Lomillo M.A., Martínez M.J. Recent developments in the field of screen-printed electrodes and their related applications // Talanta. 2007. V.73(2). P.202–219.
19. Аронбаев С.Д., Аронбаев Д.М., Исмаилов Э.Х. и др. Screen-printed электроды в инверсионновольтамперометрическом определении тяжелых металлов // Universum: Химия и биология : электрон. научн. журн. -2020. № 5(71)- C.22-34.
20. Thiyagarajan N., Chang, J.-L., Senthilkumar K., Zen, J.-M. Disposable electrochemical sensors: A mini review // Electrochem. Commun. 2014. V.38. P. 86–90.
21. Hayat A., Marty J.L. Disposable Screen- printed Electrochemical Sensors: Tools for Environmental Monitoring // Sensors. 2014. V. 14. P. 10432–10453.
22. Morrin A., Killard A.J., Smyth M.R. Electrochemical Characterization of Commercial and Home-Made ScreenPrinted Carbon Electrodes // Analytical Letters. 2003. V. 36 (9). P. 2021–2039. doi: 10.1081/AL-120023627
23. Yamanaka K., Vestergaard M.C., Tamiya E. Printable Electrochemical Biosensors: A Focus on Screen-Printed Elec-trodes and Their Application // Sensors. 2016.V.16. P 1761; doi:10.3390/s16101761.
24. Metters J.P., Kadara R.O., Banks C.E. New directions in screen printed electroanalytical sensors: an overview of recent developments // Analyst. 2011. V.136(6). P.1067–1076.
25. Hallam P.M., Kampouris D.K., Kadara R.O., Banks C.E. Graphite screen- printed electrodes for the electrochemical sensing of chromium(VI) // Analyst. 2010. V. 135. P. 1947–1952.
26. Christidis K., Robertson P., Gow K., Pollard P. Voltammetric in situ measurements of heavy, metals in soil using a portable electrochemical instrument // Measurement. 2007. V. 40. P. 960–967.
27. Pollard P., Adams M., Robertson P.J., et al. Environmental Forensic Investigations: The Potential Use of a Novel Heavy Metal Sensor and Novel Tangents. In Criminal and Environmental Soil Forensics IV. 2009, Ritz, K., Dawson, L., Miller, D., Eds. - Springer: Berlin, Germany. 2009. – P. 477–490.
28. Zaouak O., Authier L., Cugnet C., Castetbon A., Potin-Gautier M. Electroanalytical Device for Cadmium Speciation in Waters. Part 1: Development and Characterization of a Reliable Screen-Printed Sensor // Electroanalysis. 2010. V. 22. P. 1151– 1158.
29. Güell R., Aragay G., Fontàs C., Anticó E., Merkoci A. Sensitive and stable monitoring of lead and cadmium in seawater using screen-printed electrode and electrochemical stripping analysis // Anal. Chim. Acta. 2008. V. 627. P. 219– 224.
30 Cugnet C., Zaouak O., René A.,
Pécheyran C., et al. A novel microelectrode array combining screenprinting and femtosecond laser ablation technologies: Development, characterization and application to cadmium detection // Sens. Actuators B Chem. 2009. V. 143. P. 158–163.
31. Aragay G., Puig-Font A., Cadevall M., Merkoc A. Surface Characterizations of Mercury-Based Electrodes with the Resulting Micro and Nano Amalgam Wires and Spheres Formations May Reveal Both Gained Sensitivity and Faced Nonstability in Heavy Metal Detection // J.Phys.Chem.C. 2010. V. 114. P. 9049–9055.
32. Renedo O.D., González M.J.G., Martínez M.J.A. Determination of Antimony (III) in Real Samples by Anodic Strip-ping Voltammetry Using a Mercury Film Screen-Printed Electrode // Sensors. 2009. V. 9. P. 219–231.
33. Choi H.S., Kim H.D. Development of a Portable Heavy Metal Ion Analyzer Using Disposable Screen-Printed Electrodes // Bull. Korean Chem. Soc. 2009. V. 30. P. 1881–1883.
34. Arduini F., Calvo J.Q., Amine A., et al. Bismuth-modified electrodes for lead detection // TrAC. 2010. V. 29. P. 1295– 1304.
35. Аронбаев С.Д., Нармаева Г.З., Аронбаев Д.М. Углеродсодержащие экологически чистые электроды, модифицированные висмутом для вольтамперометрического анализа // Universum: Химия и биология : электрон. научн. журн. - 2018. № 5(47). URL: http://7universum.com/ru/ nature/archive/item/5782.
36. Svancara I., Prior C., Hocevar S.B.,Wang J. A Decade with Bismuth-Based Electrodes in Electroanalysis // Electroanalysis. 2010. V. 22. P. 1405– 1420.
37. Kadara R.O., Tothill I.E. Development of disposable bulk-modified screen-printed electrode based on bismuth oxide for stripping chronopotentiometric analysis of lead (II) and cadmium (II) in soil and water samples // Anal. Chim. Acta. 2008. V. 623. P. 76–81.
38. Khairy M., Kadara R.O., Kampouris D.K., Banks C.E. Disposable Bismuth Oxide Screen- printed Electrodes for the Sensing of Zinc in Seawater // Electroanalysis. 2010. V. 22. P. 1455– 1459.
39. Kokkinos C., Economou A. Stripping at Bismuth-Based Electrodes // Curr. Anal. Chem. 2008. V. 4. P. 183–190.
40. Kruusma J., Banks C.E., Compton R.G. Mercury-free sonoelectroana-lytical detection of lead in human blood by use of bismuth-film-modified boron-doped diamond electrodes // Anal. Bioanal. Chem. 2004. V. 379. – P. 700–706.
41. Yong L., Armstrong K.C., Dansby-Sparks R.N., Carrington N.A., et al. Quantitative analysis of trace chromium in blood samples. Combination of the advanced oxidation process with catalytic adsorptive stripping voltammetry // Anal. Chem. 2006. V. 78. P. 7582–7587.
42. Lu D., Belle J.L., Ninivin C.L., Mabic S., Dimitrakopoulos T. In situ electrochemical detection of trace metal vapors at bismuth doped carbon screen- printed electrodes // J. Electroanal. Chem. 2010. V. 642. P. 157–159.
43. Injang U., Noyrod P., Siangproh W., Dungchai W., et al. Determination of trace heavy metals in herbs by sequential injection analysis-anodic stripping voltammetry using screen-printed carbon nanotubes electrodes // Anal. Chim. Acta. 2010. V. 668. P. 54–60.
44. Chuanuwatanakul S., Dungchai W., Chailapakul O., Motomizu S. Determination of trace heavy Metals by Sequential Injection- anodic Stripping Voltammetry using Bismuth Film Screen- printed Carbon Electrode // Anal. Sci. 2008. V. 24. P. 589–594.
45. Siriangkhawut W., Pencharee S., Grudpan K., Jakmunee J. Sequential injection monosegmented flow voltammetric determination of cadmium and lead using a bismuth film working electrode // Talanta. 2009. V. 79. P. 1118– 1124.
46. Rico M.A., Olivares-Marín M., Gil E.P. Modification of carbon screen- printed electrodes by adsorption of chemically synthesized Bi nanoparticles for the voltammetric stripping detection of Zn(II), Cd(II) and Pb(II // Talanta. 2009. 80(2). P.631–635.
47. Khan A.A.A., Abdullah M.A. Bismuthmodified hydroxyapatite carbon electrode for simultaneous in-situ cadmium and lead analysis // International Journal of Electrochemical Science. 2014. V.8. P.195–203.
48. Nazir M.S. Eco-Friendly Extraction, Characterization and modification of microcrystalline cellulose from oil palm empty fruit bunches. - Malaysia: Universiti Teknologi Petronas, 2013.
49. Ajab H. Cellulose-Hydroxyapatite-Modified Carbon Electrode Sensor for Plumbum ions detection in aqueous and complex media. Malaysia: Universiti Teknologi Petronas; 2015.
50. Rajawat D.S. Voltammetric studies on some plant based sensors for trace metal determination in aqueous system a green approach. India: Dayalbag Educational Institute, 2013.
51. Fatibello-Filho O., Lupetti K.O., Leite O.D., et al. Electrochemical biosensors based on vegetable tissues and crude extracts for environmental, food and pharmaceutical analysis // Comprehensive Analytical Chemistry. bioelectrode // Philippine Agricultural 2007. V.49. P.357–377. Scientist. 2006. V.89. P.134– 140.
52. Kuriyama S., Rechnitz G. Plant tissue- 56. Mojica E.R.E., Vidal J.M., Pelegrina based bioselective membrane electrode A.B., et al. Voltammetric determination for glutamate // Analytica Chimica Acta. of lead (II) ions at carbon paste electrode 1981. V.131. P.91–96. modified with banana tissue // Journal of
53 Mojica E.R.E., Merca F., Micor J. Fiber Applied Sciences. 2007. No7. P.1286– of kapok (Ceiba pentandra) as component 1292. of a metal sensor for lead in water 57. Mojica E.R.E., Santos J.H., Micor J.R.L. samples // Philippine Journal of Crop Determination of lead using a feather-Science. 2002. V.27(2). P.37–42. modified carbon paste electrode by
54. Ouangpipat W., Lelasattarathkul T., anodic stripping voltammetry // World Dongduen C., et al. Bioaccumulation and Applied Sciences. 2007. V.2(5). P.512– determination of lead using treated- 518.
Pennisetum-modified carbon paste 58. Mojica E.R.E., Tocino A., Micor J., et al. electrode // Talanta. 2003. V.61(4). A feather-trode sensor for detecting lead P.455–464. ions // Philippine Journal of Science.
55. Mojica E.R.E., Gomez S.P., Micor J.R.L., 2005. V.134(1). P.51–56. et al. Lead detection using a pineapple УДК:546.3
Published
2021-02-15
How to Cite
Аронбаев , Д., С. Аронбаев, and Д. Исакова. 2021. “MONITORING OF ENVIRONMENTAL OBJECTS USING ECOLOGICALLY CLEAN ELECTRODES ”. EurasianUnionScientists 2 (1(82), 54-63. https://doi.org/10.31618/ESU.2413-9335.2021.2.82.1205.