WIND POWER PLANT PARAMETERS OPTIMIZATION MODEL
Abstract
A technical and economic model of a wind power plant has been developed. Parameterization was carried out and the main parameters of the wind power plant were identified. Statistical relationships of parameters with capital investments in wind turbines and costs of their operation and maintenance were established. The criterion for the search for optimal parameters is taken as the minimum discounted unit costs for the production of electrical energy for the economic life of the wind power plant. To do this, the electricity production in a wind power plant must be maximized by reducing the so-called wake effect that is created in a wind farm due to the shading of some wind turbines by others. The velocity reduction behind each wind turbine is estimated. An algorithm for optimizing the parameters of a wind power plant has been developed. An optimization model was used to determine the parameters of the Hasia wind power plant.
References
Galanis N., Christophides C. Technical and economic considerations for the design of optimum wind energy conversion systems // J.Wind Engin. And Industrial Aerodyn. 1990. V.34. N2. P.185-196.
Follings F.J. Economic optimization of wind power plants // European Wind Energy Conf. London: Peter Peregrinus. 1989. P.983-987.
Guidelines for the economic analysis of renewable energy technology applications. ParisЖ Int. Energy Agency. 1991. 175 p.
Morthorst P.E., Jensen P.H. Economics of wind turbinees // Wind Energy in Denmark: research and technological development, 1990, Copenhagen: Ministry of Energy, Danish Energy Agency, 1990, P.54-55.
Kiranoudis, C, Voros, N., and Maroulis, Z., 2001, "Shortcut design of wind farms". Energy Policy, 29, pp. 567-578.
Kaldellis, J. K., and Gavras, T. J., 2000, "The economic viability of commercial wind plants in Greece a complete sensitivity analysis". Energy Policy, 28, pp. 509-517.
Herman, S., 2002, Probabilistic cost model for analysis of offshore wind energy costs and potential. Technical Report ECN-I-02-007, Energy Research Centre of the Netherlands, May.
National Renewable Energy Laboratory, 2009, Jobs and Economic Development Impact (JEDI) Model. Golden, Colorado, US, October.
Cockerill, T. Т., 1997, Methods assisting the design of OWECS part a: Concept analysis, cost modeling and economic optimization. Technical Report JOR3-CT95-0087, Renewable Energy Centre, University of Sunderland.
Krohn S., Morthorst P.E., Awerbuch S., The Economics of Wind Energy Association, 2009. www.ewea.org.
Сидоренко Г.И. Основы и методы определения комплексного потенциала возобновляемых энергоресурсов региона и его использования. автореф. дисс. на соискание ученой степени доктора технических наук. Санкт-Петербург, 2006. – 33 с.
Марченко О.В. Стоимость энергии и оптимальные параметры ветроэнергетических установок // Изв. РАН. Энергетика 1997. N3. С.52-60.
Сидоренко Г.И., Кудряшова И.Г., Пименов В.И. Экономика нетрадиционных и возобновляемых источников энергии. Техникоэкономический анализ. СПб.: Изд-во Политех. Унта, 2008. – 248 с.
Ресурсы и эффективность использования возобновляемых источников энергии в России / П.П.Безруких, Ю.Д.Арбузов, Г.А.Борисов, В.И.Виссарионов, В.М.Евдокимов, Н.К.Малинин, Н.В.Огородов, В.Н.Пузаков, Г.И.Сидоренко, А.А.Шпак. – СПб.: Наука, 2002. 314 с.
Сидоренко Г.И., Сидоренко Д.Г., Сидоренко И.Г. Численное моделирование обтекания ветроэнергетических установок // Труды ИПМИ, Вып.4. Методы математического моделирования и информационные технологии. Петрозаводск, 2003. С.106-128.
Chowdhury S., Messac A., Zhang J., Castillo L., Lebron J., Optimizing the Unrestrected Placement of Turbines of differing rotor diameters in a wind farm for maximum power generation. Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and information of engineering conference IDETC/CIE 2010, August 15-18, 2010, Monreal, Quebec, Canada. DETC2010-29129.
Frandsen, S. On the Wind Speed Reduction in the Center of a Large Cluster of Wind Turbines. Journal of Wind Engineering and Industrial Aerodynamics, 39 (1992), 251-265.
Cal, R. B., Lebron, J., Kang, H.S., Meneveau, C., and Castillo, L., Experimental study of the horizontally averaged flow structure in a model windturbine array boundary layer, submitted to Journal of Renewable and Sustainable Energy, August 2009.
Sidorenko G.I., Al. Jamil A., Energy Visions 2035 for Syria, Journal of Physics: Conference Series. EMMFT 2019. IOP Publishing, 1614(2020) 01023 https://doi.org/10.1088/1742-6596/1614/1/012023.
CC BY-ND
A work licensed in this way allows the following:
1. The freedom to use and perform the work: The licensee must be allowed to make any use, private or public, of the work.
2. The freedom to study the work and apply the information: The licensee must be allowed to examine the work and to use the knowledge gained from the work in any way. The license may not, for example, restrict "reverse engineering."
2. The freedom to redistribute copies: Copies may be sold, swapped or given away for free, in the same form as the original.