SYNTHESIS AND PHYSICO-CHEMICAL STUDY OF THE Bi2Te3-HoTe3 SYSTEM
Abstract
The physicochemical study of the Bi2Te3-HoTe3 system was carried out by differential thermal (DTA), X-ray phase (XRD), microstructural (MSA) methods, as well as by measuring the microhardness and determining the density, and a T-x phase diagram was constructed. It was found that the Bi2Te3-HoTe3 system is a partially quasibinary section of the Bi-Ho-Te ternary system. The system is undergoing eutectic equilibrium and peritectic transformation. Solid solutions based on Bi2Te3 at room temperature reach 6 mol % HoTe3, while solid solutions based on HoTe3 have practically not been established.
References
2. Veis A.N., Lukyanova L.N., Kutasov V.A. The band gap and the type of optical transitions at the interband absorption threshold in solid solutions based on bismuth telluride // Physics of the Solid State. 2012. T. 54. no. 11.P. 1051-1057.
3. Misochko O.V., Melnikov A.A., Chekalin S.V., Bykov A. Yu. Features of coherent phonons of a strong topological insulator Bi2Te3 // JETP Letters. 2015. V. 102. No. 4. P. 262-268.
4.Mamur H., Bhuiyan, M.R.A., Korkmaz F., Nil M. A review on bismuth telluride Bi2Te3 nanostructure for thermoelectric applications // Renew. Sustain. Energy Rev. 2018. V. 82.4159-4169. doi: 10.1016 / j.rser.2017.10.112
5. Lee G.E., Kim I.H., Lim Y.S., Seo W.S., Choi B.J., Hwang C.W. Preparation and thermoelectric properties of doped Bi2Te3-Bi2Se3 solid solutions // J. Electron. Mater. 2014. V. 43. P. 1650-1655.
6.Wu F., Wang W., Hu X., Tang M. 10 90 430.680.790 6.92 - 1170 0.0 100 780.800 6.82 - 1160 Thermoelectric properties of I-Doped n-Type Bi2Te3based material prepared by hydrothermal and subsequent hot pressing // Prog. Nat. Sci. 2017.27.203-207.
7.Liu W.-S., Zhang Q., Lan Y., Chen S., Yan X., Zhang Q., Wang H., Wang D., Chen G., Ren Z. Thermoelectric property studies on Cu- doped n-Type CuxBi2Te2,7Se0,3 nanocomposites // Adv. Energy. Mater. 2011. V.1. P. 577-587.
8. Sie F.R., Kuo C.K., Hwang C.S., Chou Y.W., Yeh C.H., Lin Y.L., Huang J.Y. Thermoelectric performance of n-Type Bi2Te3 / Cu composites fabricated by nanoparticle decoration and spark plasma sintering. // J. Electron. Mater. 2016.45.1927-1934.
9.Han M.-K., Yu B.G., Jin Y., Kim S.J. A Synergistic effect of metal iodide doping on the thermoelectric properties of Bi2Te3 // Inorg. Chem. Front. 2017. V. 4. P. 881–888.
10. Chen S., Cai K.F., Li F.Y., Chen S.Z. The Effect of Cu Addition on the system stability and thermoelectric properties of Bi2Te3 // J. Electron. Mater. 2014. V. 43. P. 1966-1971.
11. Imamuddin M., Dupre A. Thermoelectric properties of p-type Bi2Te3 – Sb2Te3 – Sb2Se3 alloys and n-type Bi2Te3 – Bi2Se3 alloys in the temperature range 300 to 600 K // Phys. Status Solids (A) 1972. V. 10. P. 415-424.
12. Shen S., Zhu W., Deng Y., Zhao H., Peng Y., Wang C. Enhancing thermoelectric properties of Sb2Te3 flexible thin film through microstructure control and crystal preferential orientation engineering // Appl.Surf. Sci. 2017. V. 414. P. 197–204. https://doi.org/10.1016 / j.apsusc.2017.04.074 13. Nikiforov V. N., Morozkin A. V., Irkhin V. Yu. Thermoelectric properties of rare-earth alloys // Physics of metals and material science 2013. V. 114. No. 8. P .711-720.
14. Kudrevatykh NV, Volegov AS Magnetism of rare-earth metals and their intermetallic compounds // Yekaterinburg Publishing house of the Ural University 2015. 196 p.
15. Belov KP Rare-earth magnets and their application. M .: Science. 1980.240 s.
16. Belov KP Rare earth ferromagnets and antiferromagnets / KP Belov, MA Belyanchikova, RZ Levitin et al. Moscow: Nauka. 1965. 256 s.
17. Physicochemical properties of semiconductor substances. Directory. Moscow. Ed. Science. 1979. 339 s.
18. Yarembash E.I., Eliseev A.A. Rare earth metal chalcogenides. Moscow: Nauka, 1975.260 p.
CC BY-ND
A work licensed in this way allows the following:
1. The freedom to use and perform the work: The licensee must be allowed to make any use, private or public, of the work.
2. The freedom to study the work and apply the information: The licensee must be allowed to examine the work and to use the knowledge gained from the work in any way. The license may not, for example, restrict "reverse engineering."
2. The freedom to redistribute copies: Copies may be sold, swapped or given away for free, in the same form as the original.